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Spondoolies, Verisense & GUC 

• Spondoolies: 
– Develops power-efficient Bitcoin mining equipment, Kiryat-Gat 

• Verisense: 
– ASIC and FPGA development services, Jerusalem 

• GUC: 
– IC implementation and manufacturing services, rich IP portfolio, 

Hsinchu, Taiwan 

• Bitcoin ASICs responsibility: 
– Spondoolies: system, SW, ASIC design 
– Verisense: ASIC design, verification, synthesis, STA, netlist handoff 
– GUC: IPs, libraries, backend, package, test, production 
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Bitcoin Mining Application 

• Architecture: 
– Bitcoin calculation is based on double SHA256 
– Many 128-stage pipelined engines, each generates a 

result every clock 
– Random data: high toggle rate 

• Optimization: system cost/performance 
– Chip cost/performance: mostly silicon area 
– Power/performance: power affects system cost 

• Dynamic power is dominant 

– Performance: GigaHash/sec 

• Short lifetime: a new generation every 6 months 
 

One Pipeline stage 
768 bits width 
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2nd gen Mining Chip: RockerBox 

• Process: TSMC 28HPM 

• 246 Mgates, no SRAMs 

• Power: 80W (typical, 0.63V) 

• Voltage range: 0.55V…0.8V 

• Die: 116 mm2 

• Package: FCBGA 19mmx19mm  

• High volume production since 
July/2014 

I/Os, PLL, Temperature Sensor 
management logic 

193 Double SHA-256 Engines 
No I/Os on sides 

ESDs are spread through the die 
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Key Development 

• Optimization of a whole system of 30 chips 

• Cost efficiency: 
– Logic redundancy for high yield 

– Proprietary logic BIST instead of Scan 

– Process shift for higher performance 

• Power efficiency: 
– Operating voltage 30% below 28HPM nominal 

– Triple-loop Dynamic Voltage Frequency Scaling (DVFS) 

– Accurate dynamic power analysis and toggle rate spreading 
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Logic Redundancy for High Yield 

• System is tolerant to faulty SHA-256 engines  

• Proprietary logic BISTs to identify faulty engines 
– The BIST uses SHA-256 pipeline itself 

– LSFR-based BIST for a strict test 

– Vector-based BIST for statistical system test 

• Scan wasn’t inserted to reduce area/power overhead 
– Fault coverage tool was developed by Ilia Greenblat to check 

BIST coverage 

• Final product yield: 99% 
– Natural yield is about 90% (Die: 116 mm2) 
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Dynamic Voltage Frequency Scaling (DVFS) 

• Voltage regulator (DC2DC) per ASIC 

• Slow and Fast corners are compensated by 
voltage adjustment 

FF SS 
Production speed variation 

0.72 V 0.63 V 0.55 V 

DVFS-compensated speed variation 
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DVFS Voltage Target Definition 
• Trends: 

– Frequency vs. Voltage  linear 
– Power vs. Voltage  V2 

– Power/frequency vs. Voltage  linear 
– Conclusion: use lowest possible voltage 

• Linearity range low limit: 
– At around Vtl N + Vtl P 

• Selected DVFS target at TT/125C: 0.63V 



May 6, 2015 
9 

Triple Loop DVFS 

• DVFS loops 
– Frequency loop per chip: searching for max frequency 

– Temperature loop per chip: at 125oC voltage is reduced 

– Total system power loop:  increase/decrease chips voltages 
to meet total system power budget 

• DVFS performance  
– Speed sensor correlation vs. critical path is a key 

• Full correlation is achieved by using logic BIST (pipeline itself) 

– Voltage granularity: 1 mV, frequency granularity: 10 MHz 

– Hysteresis at every action point 
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DVFS Operation in System 

Achieved robust and stable DVFS system operation  
 

 
Every chip and its DC2DC report:  

voltage, frequency, power, temperature 
Correlation: production test vs. 

system test 
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Library Selection for Low Voltage 

• 7T Libraries were selected 
– 20% area/power reduction 
– Negligible performance impact 

• Dynamic vs. leakage vs. 
performance trade-off: 
– SVT, 35 nm: 85% (Synthesis) 
– LVT, 40 nm: 14% (Synthesis) 
– LVT, 35 nm: 1% (Timing closure) 

• Only 18% pre-layout to post-
layout area growth 
– 18%: Clock tree, hold, set up, 

transitions fix 
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Timing Closure 
• P&R optimization corner: TT, 0.63V, 125C, Cmax 

• Set up corners: SS, 0.72V, 0C/125C, Cmax/RCmax 
– 5 corners 

• Hold time corners: full matrix 0.63V-0.88V 
– 13 corners 

• OCV and uncertainty: defined for every corner by Monte-
Carlo spice simulations 

• All used libraries were re-characterized for all defined corners 

• Production tests were defined according  

     to timing closure corners 
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Low Voltage Methodology 

• 4-3 transistors in series cells were excluded from libraries 
• Max Xtalk glitch and max transition parameters were tightened  
• Extracted LO spice simulations: 

– All clock trees to check transitions 
– Critical path to check correlation vs. STA 
– Libraries' FFs were simulated to check metastability convergence 

• Separate 0.9V power domain for PLL, TS and I/Os 

MC Clocks simulation 
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Dynamic Power Analysis 
• Accurate dynamic power estimation flow was developed 

– 10% accuracy vs. post-silicon measurements 

• For power analysis accuracy: 
– Representative activity from simulation 
– GL simulation resolution = gate delay (20-30 ps) 
– State dependent SAIF  

• Allows accurate comparison of arithmetic architectures 
Stages: 

Netlist 

Extracted RC 

SDF generation 

GL simulation 

SAIF generation 

Power reporting 

D 

CLK 

Toggle from 
arithmetic 

State dependent SAIF example: 
D toggle power is very different at CLK high and low  

Q 
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Current Peak Challenge 

• Original toggle rate: FFs 50%, arithmetics 200%-300% 
– Random data flows through arithmetic pipeline 

• New architecture: 
– Reduced FFs toggle to 34% (Spondoolies patent) 
– Divided toggle rate to 4 clock phases 

• Master-slave DLL was developed to spread clock 
edges 

slv_dl8

outclk

outclk

outclk

outclk

outclk

outclk

outclk

outclk

cc

mp

Control logic

inclk

master_dll_mstr_mstr_dl8_fx8de

master_dll_mstr_mstr_dl

slv_dl8

slv_dl16

slv_dl24

slv_dl32

slv_dl40

slv_dl48

slv_dl56

slv_dl64
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Spreading Current Peaks 

Current peaks were reduced to acceptable level 

Final current 

peaks 

Original current peaks 

Dynamic IRdrop 

simulation 
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Metal Stack for Low IRdrop 

• At low voltage and high supply current (130A) low IRdrop is critical 
• Traditional power grid metal stack:  

– X direction: Z layer (8.5 KÅ copper) 
– Y direction: AP layer (14 KÅ aluminum) 

• We added U layer (4x lower resistance than Z layer): 
– X direction: U layer (35 KÅ copper) 
– Y direction: Z layer (8.5 KÅ copper) + UT-AP layer (28 KÅ Al) 
– TSMC provided tech files for 5x1z1u1UT-AP stack 

• Disadvantage: U layer metal density is limited to 50% 
– Z and AP layer densities are up to 70% 

• Achieved static IRdrop 2%, dynamic IRdrop 5% 
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Process Shift 

• 28HPM was shifted by 2 sigma to fast corner 
– 20% performance increase 

• 98% yield due to redundancy and hold time margins 

• More than 300 Ku were produced in 6 months 

SS -2 -1 0 1 2 FF 

2 sigma 

Target shift Actual shift System performance 
improvement 

20% 
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Summary 

• Optimization for entire multi-chip system 

• For cost and power efficiency: 

– Redundancy, logic BIST, triple-loop DVFS, process shift 

• 28HPM process was used at low voltage and wide 
DVFS range 

– Methodology was proven in high volume production 




